
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cosimulation-based power estimation for system-on-chip design

handle: 11583/1667426
Cosimulation-based power estimation for system-on-chip design
We present efficient power estimation techniques for hardware-software (HW-SW) system-on-chip (SoC) designs. Our techniques are based on concurrent and synchronized execution of multiple power estimators that analyze different parts of the SoC (we refer to this as coestimation), driven by a system-level simulation master. We motivate the need for power coestimation, and demonstrate that performing independent power estimation for the various system components can lead to significant errors in the power estimates, especially for control-intensive and reactive-embedded systems. We observe that the computation time for performing power coestimation is dominated by: i) the requirement to analyze/simulate some parts of the system at lower levels of abstraction in order to obtain accurate estimates of timing and switching activity information and ii) the need to communicate between and synchronize the various simulators. Thus, a naive implementation of power coestimation may be too inefficient to be used in an iterative design exploration framework. To address this issue, we present several acceleration (speed-up) techniques for power coestimation. The acceleration techniques are energy caching, software power macro-modeling, and statistical sampling. Our speed-up techniques reduce the workload of the power estimators for the individual SoC components, as well as their communication/synchronization overhead. Experimental results indicate that the use of the proposed acceleration techniques results in significant (8/spl times/ to 87/spl times/) speed-ups in SOC power estimation time, with minimal impact on accuracy. We also show the utility of our coestimation tool to explore system-level power tradeoffs for a TCP/IP check-sum engine subsystem.
- University of Udine Italy
- College of New Jersey United States
- Polytechnic University of Turin Italy
- Università degli studi di Salerno Italy
- University of California, San Diego United States
16 Research products, page 1 of 2
- 2011IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
