Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies

Authors: Junlei Wang; Lihua Tang; Liya Zhao; Zhien Zhang;

Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies

Abstract

Abstract Galloping-based piezoelectric energy harvester (GPEH) has been used in power generation from small-scale airflows for low-power devices such as Micro-Electromechanical Systems (MEMS) and wireless sensing electronics. The bluff body plays an important role for the onset of galloping. Existing literature regarding analytical and numerical analysis of GPEH has focused on designs incorporating bluff bodies with a variety of cross-sections, such as square, D-section and regular triangle. In this work, a GPEH with triangular cross-section bluff bodies with different vertex angles is investigated. The aerodynamic characteristics are determined by Computational Fluid Dynamics (CFD) and verified by experimental data. Subsequently, an aero-electro-mechanical model with piezoelectric coupling is established and numerically solved. Furthermore, a parametric study is performed to investigate the influence of electromechanical coupling on the GPEH's behavior, with a focus on the threshold wind speed, transverse displacement and power output. It is determined that with weak coupling, the obtuse angle β = 130° is the most preferred vertex angle. This is the first documented determination that an obtuse angled isosceles triangle could be used for efficient galloping energy harvesting. The findings provide a guideline for designing efficient GPEHs with triangular bluff bodies.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    214
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
214
Top 0.1%
Top 10%
Top 0.1%