
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Development and optimization of a microbial co-culture system for heterologous indigo biosynthesis

Development and optimization of a microbial co-culture system for heterologous indigo biosynthesis
Abstract Background Indigo is a color molecule with a long history of being used as a textile dye. The conventional production methods are facing increasing economy, sustainability and environmental challenges. Therefore, developing a green synthesis method converting renewable feedstocks to indigo using engineered microbes is of great research and application interest. However, the efficiency of the indigo microbial biosynthesis is still low and needs to be improved by proper metabolic engineering strategies. Results In the present study, we adopted several metabolic engineering strategies to establish an efficient microbial biosynthesis system for converting renewable carbon substrates to indigo. First, a microbial co-culture was developed using two individually engineered E. coli strains to accommodate the indigo biosynthesis pathway, and the balancing of the overall pathway was achieved by manipulating the ratio of co-culture strains harboring different pathway modules. Through carbon source optimization and application of biosensor-assisted cell selection circuit, the indigo production was improved significantly. In addition, the global transcription machinery engineering (gTME) approach was utilized to establish a high-performance co-culture variant to further enhance the indigo production. Through the step-wise modification of the established system, the indigo bioproduction reached 104.3 mg/L, which was 11.4-fold higher than the parental indigo producing strain. Conclusion This work combines modular co-culture engineering, biosensing, and gTME for addressing the challenges of the indigo biosynthesis, which has not been explored before. The findings of this study confirm the effectiveness of the developed approach and offer a new perspective for efficient indigo bioproduction. More broadly, this innovative approach has the potential for wider application in future studies of other valuable biochemicals’ biosynthesis.
- Rutgers, The State University of New Jersey United States
- Xiamen University China (People's Republic of)
- Xiamen University China (People's Republic of)
Research, E. coli, Biosensing Techniques, Indigo Carmine, Microbiology, QR1-502, Carbon, Biosynthetic Pathways, Metabolic Engineering, Escherichia coli, Global transcription machinery engineering, Modular co-culture engineering, Indigo, Biosensor
Research, E. coli, Biosensing Techniques, Indigo Carmine, Microbiology, QR1-502, Carbon, Biosynthetic Pathways, Metabolic Engineering, Escherichia coli, Global transcription machinery engineering, Modular co-culture engineering, Indigo, Biosensor
6 Research products, page 1 of 1
- 2006IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
