
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
High vapour pressure nanofuel droplet combustion and heat transfer: Insights into droplet burning time scale, secondary atomisation and coupling of droplet deformations and heat release

High vapour pressure nanofuel droplet combustion and heat transfer: Insights into droplet burning time scale, secondary atomisation and coupling of droplet deformations and heat release
Abstract Combustion characteristics of ethanol-water (EW) droplets laden with ceria nanoparticles are investigated. The present experimental study focuses on three facets of droplet combustion (i) burning time scale of droplets with and without NPs, (ii) pathways of secondary atomisation due to interface deformations and (iii) coupling of droplet shape deformations and flame heat release. A theoretical vaporisation timescale is advocated which considers natural convection-based evaporation, mass loss due to daughter droplet ejections, and flow through porous media. Droplets seeded with ceria nanoparticles, exhibit arrested surface undulations although internal ebullition is discernibly enhanced as compared to EW droplets without NPs. Deformations and formation of surface craters in EW droplets are traced to the imbalance between local vapour recoil (due to rapid ethanol vaporisation) and surface tension. Such craters collapse and form high-speed ligaments which eventually break at the tip through Rayleigh–Plateau mechanism. This pathway of secondary atomisation of EW droplets has been elucidated using a modified local weber number. On the contrary, for nanofuels, bubble rupture is the mechanism behind the surface crater formation. Proper orthogonal decomposition (POD) technique is utilised for investigating the droplet shape and flame heat release coupling. EW droplet shape and HR are found to be a synced system with a phase lag arising from the flame response timescale. However, a weak coupling is detected for nanofuel droplets.
Interdisciplinary Centre for Energy Research, Mechanical Engineering, 600
Interdisciplinary Centre for Energy Research, Mechanical Engineering, 600
19 Research products, page 1 of 2
- 2021IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
