Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fluid Phase Equilibr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fluid Phase Equilibria
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Separation of azeotropic mixtures (ethanol and water) enhanced by deep eutectic solvents

Authors: Baojian Liu; Yong Peng; Xiuyang Lu; Ju Zhu;

Separation of azeotropic mixtures (ethanol and water) enhanced by deep eutectic solvents

Abstract

Abstract The distillation of azeotropic mixtures is commonly and widely performed in the pharmaceutical, petroleum, and chemical industries. Deep eutectic solvents (DESs) are environmentally-friendly entrainers that have many properties similar to ionic liquids (ILs) but are also simple in preparation and cheap in price. Also, the ethanol/water system is a typical industrial azeotropic mixture. In this work, the relative volatility of ethanol and water at the azeotropic point was increased from 1.00 to 4.70 with 0–51.0 mass % ChCl/urea (1:2, mol/mol), with ChCl/urea showing a remarkable entrainer performance in this separation. Isobaric vapor–liquid equilibrium (VLE) data of four systems, water + ethanol, water + ChCl/urea, ethanol + ChCl/urea, and water + ethanol + ChCl/urea (at 10, 20, and 30 mass%), were determined using a modified Othmer equilibrium still at 101.32 kPa. After addition of ChCl/urea, the ethanol + water mixture’s azeotropic point was eliminated. The parameters of the nonrandom two-liquid (NRTL) model for these systems were calculated and the predicted values for these systems were found to fit the experimental VLE data quite well.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 10%