
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Redox-active biochar facilitates potential electron tranfer between syntrophic partners to enhance anaerobic digestion under high organic loading rate

pmid: 31835198
Redox-active biochar facilitates potential electron tranfer between syntrophic partners to enhance anaerobic digestion under high organic loading rate
Sawdust-based biochar prepared (SDBC) at three pyrolytic temperatures were compared as additives to mesophilic anaerobic digestion (AD). SDBC prepared at 500 °C performed better in enhancing CH4 production than other SDBCs. Analyzing the crucial electro-chemical characteristics of the SDBCs revealed that the excellent electron transfer capacity of SDBC was significant to stimulate methanogenesis promotion. A long-term semi-continuous operation further confirmed that adding SDBC to AD system increased the maximum organic loading rate (OLR) from 6.8 g VS/L/d to 16.2 g VS/L/d, which attributed to the extremely low volatile fatty acids (VFA) accumulation. Microbial community succession analysis found that SDBC addition altered both bacterial and archaea structure greatly. More importantly, the syntrophic and electro-active partners of Petrimonas and Methanosarcina synergistically enriched under high OLR condition were responsible for the high-efficient VFA degradation, which suggested that SDBC likely acted as redox-active mediator to facilitate direct interspecies electron transfer between the syntrophic partners for high-efficient syntrophic methanogenesis process.
- Xi'an University of Architecture and Technology China (People's Republic of)
- Xi'an University of Architecture and Technology China (People's Republic of)
Electrons, Bioreactors, Charcoal, Anaerobiosis, Methane, Oxidation-Reduction
Electrons, Bioreactors, Charcoal, Anaerobiosis, Methane, Oxidation-Reduction
9 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2004IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2004IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).90 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
