Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solution-Processed Earth-Abundant Cu2BaSn(S,Se)4 Solar Absorber Using a Low-Toxicity Solvent

Authors: Betul Teymur; Yihao Zhou; Edgard Ngaboyamahina; Jeffrey T. Glass; David B. Mitzi;

Solution-Processed Earth-Abundant Cu2BaSn(S,Se)4 Solar Absorber Using a Low-Toxicity Solvent

Abstract

Cu2BaSn(S,Se)4 (CBTSSe) has recently gained substantial attention as an alternative absorber material for photovoltaic (PV) and photoelectrochemical (PEC) applications due to the abundance of the constituent elements, a large absorption coefficient, tunable band gap ranging from 1.5 to 2 eV, and reduced tendency for antisite disorder relative to Cu2ZnSn(S,Se)4. In this study, as an alternative to more expensive vacuum-based film-deposition processes, we report a low-toxicity solution-based process for the fabrication of high quality CBTSSe absorber layers with micrometer-scale film thickness and grain size. The facile process involves spin-coating an environmentally benign solution of highly soluble, inexpensive, and commercially available precursors, Ba(NO3)2, Cu(CO2CH3)2, and SnI2, followed by sequential sulfurization/selenization annealing. A high-temperature prebaking step under sulfur vapor is needed for each film layer to avoid forming the difficult-to-remove impurity phase, Ba(SO4), when starting f...

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
Related to Research communities