
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimizing the idle performance of an n-butanol fueled Wankel rotary engine by hydrogen addition

Optimizing the idle performance of an n-butanol fueled Wankel rotary engine by hydrogen addition
Abstract This work aims to improve the idle performance of the n-butanol rotary engine by blending hydrogen and reducing idle speed. Hydrogen volume percentage (βH2) changes from 0 to 7.94% and the idle speed decreases from 2600 to 2400 rpm. The test results show that the engine can achieve better stability and economy due to the coupling effect of mixing hydrogen and reducing the idling. The total fuel flow rate reduces from 24.57 MJ/h at 2600 rpm when pure n-butanol is fueled to 19.35 MJ/h at 2400 rpm when βH2 equals to 7.94%. The period of flame development and propagation are observably decreased by blending hydrogen even if reducing idle speed has a few negative effects. Hydrogen enrichment is an effective way to reduce the emissions of CO and HC. Besides, the negative effects of reducing idle speed on HC and CO emissions are decreased to a negligible level when βH2 passes about 7%. Besides, NOx emission is maintained at an extremely low value in the testing range. Also, enrichment hydrogen can compensate for the negative effects on combustion and emissions of reducing idle speed.
- Beijing University of Technology China (People's Republic of)
- Beijing University of Technology China (People's Republic of)
3 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
