
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
UNDERWATER PHOTOGRAMMETRY DIGITAL SURFACE MODEL (DSM) OF THE SUBMERGED SITE OF THE ANCIENT LIGHTHOUSE NEAR QAITBAY FORT IN ALEXANDRIA, EGYPT

UNDERWATER PHOTOGRAMMETRY DIGITAL SURFACE MODEL (DSM) OF THE SUBMERGED SITE OF THE ANCIENT LIGHTHOUSE NEAR QAITBAY FORT IN ALEXANDRIA, EGYPT
Abstract. Underwater photogrammetry in archaeology in Egypt is a completely new experience applied for the first time on the submerged archaeological site of the lighthouse of Alexandria situated on the eastern extremity of the ancient island of Pharos at the foot of Qaitbay Fort at a depth of 2 to 9 metres. In 2009/2010, the CEAlex launched a 3D photogrammetry data-gathering programme for the virtual reassembly of broken artefacts. In 2013 and the beginning of 2014, with the support of the Honor Frost Foundation, methods were developed and refined to acquire manual photographic data of the entire underwater site of Qaitbay using a DSLR camera, simple and low cost materials to obtain a digital surface model (DSM) of the submerged site of the lighthouse, and also to create 3D models of the objects themselves, such as statues, bases of statues and architectural elements. In this paper we present the methodology used for underwater data acquisition, data processing and modelling in order to generate a DSM of the submerged site of Alexandria’s ancient lighthouse. Until 2016, only about 7200 m2 of the submerged site, which exceeds more than 13000 m2, was covered. One of our main objectives in this project is to georeference the site since this would allow for a very precise 3D model and for correcting the orientation of the site as regards the real-world space.
Technology, T, Engineering (General). Civil engineering (General), TA1501-1820, Applied optics. Photonics, TA1-2040
Technology, T, Engineering (General). Civil engineering (General), TA1501-1820, Applied optics. Photonics, TA1-2040
5 Research products, page 1 of 1
- 2004IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
