Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytica Chimica Ac...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytica Chimica Acta
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A MIP-based low-cost electrochemical sensor for 2-furaldehyde detection in beverages

Authors: Pesavento, M; Merli, D; Biesuz, R; Alberti, G; Marchetti, S; Milanese, C;

A MIP-based low-cost electrochemical sensor for 2-furaldehyde detection in beverages

Abstract

There is an increasing interest in determining the concentration of furanic compounds naturally formed in food aqueous matrices, by in situ, fast and low-cost methods. A sensor presenting such characteristics is here proposed, and characterized. It is based on a molecularly imprinted polymer (MIP) as a receptor with electrochemical transduction on a screen printed cell (SPC). The molecularly imprinted polymer has been developed for a particular furanic derivative, 2-furaldehyde (2-FAL). The detection bases on the reduction of 2-FAL selectively adsorbed on the polymer layer in contact with the working electrode. The polymer layer is simply formed by in situ polymerization, directly over the SPC and it was characterized by IR, SEM and electrochemical methods. Even if based on an easy and fast preparation procedure, the layer sufficiently adheres to the cell surface giving a reusable sensor. Square wave voltammetry (SWV) was applied as the signal acquisition method. The sensor performance in aqueous solution (NaCl 0.1 M) was tested, obtaining that the dose-response curve is fitted by the Langmuir adsorption isotherm. The sensitivity, and so the limit of detection, were noticeably improved by a chemometric approach based on the Design of experiment method. (optimized conditions: Estep = 0.03 V, Epulse = 0.066 V, f = 31 s-1). In water solution at pH around neutrality the dynamic range was from about 50 μM to 20 mM. Similar results were obtained for a white wine containing 12% ethanol, which has been considered as a typical example of beverage possibly containing furhaldehydes. The higher limit of quantification can be modulated by the amount of MIP deposited, while the lower detection limit by the conditions of the electrochemical measurement.

Country
Italy
Related Organizations
Keywords

Electrochemical transduction, Molecularly imprinted polymer, Screen printed cell, Electrochemical Techniques, 540, Furanic compound, 620, 543, Beverages, Molecular Imprinting, Molecularly Imprinted Polymers, Limit of Detection, Furaldehyde, Affinity sensor, Beverage, Electrodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 1%