Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Pollution
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

To what extent do molecular collisions arising from water vapour efflux impede stomatal O3 influx?

Authors: Gerhard Wieser; Johan Uddling; Jan B. C. Pettersson; Rainer Matyssek;

To what extent do molecular collisions arising from water vapour efflux impede stomatal O3 influx?

Abstract

Pre-requisite for reliable O(3) risk assessment for plants is determination of stomatal O(3) uptake. One unaddressed uncertainty in this context relates to transpiration-induced molecular collisions impeding stomatal O(3) influx. This study quantifies, through physical modelling, the error made when estimating stomatal O(3) flux without accounting for molecular collisions arising from transpiratory mass flow of gas out of the leaf. The analysis demonstrates that the error increases with increasing leaf-to-air water vapour mole fraction difference (Δw), being zero in water vapour saturated air and 4.2% overestimation at Δw of 0.05. Overestimation is approximately twice as large in empirical studies quantifying stomatal O(3) flux from measured leaf or canopy water flux, if neglecting both water vapour-dry air collisions (causing overestimation of leaf conductance) and collisions involving O(3). Correction for transpiration-induced molecular collisions is thus relevant for both empirical research and for large-scale modelling of stomatal O(3) flux across strong spatial Δw gradients.

Keywords

Models, Molecular, Steam, Ozone, Plant Stomata, Water, Plant Transpiration

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average