
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
To what extent do molecular collisions arising from water vapour efflux impede stomatal O3 influx?

pmid: 22763329
To what extent do molecular collisions arising from water vapour efflux impede stomatal O3 influx?
Pre-requisite for reliable O(3) risk assessment for plants is determination of stomatal O(3) uptake. One unaddressed uncertainty in this context relates to transpiration-induced molecular collisions impeding stomatal O(3) influx. This study quantifies, through physical modelling, the error made when estimating stomatal O(3) flux without accounting for molecular collisions arising from transpiratory mass flow of gas out of the leaf. The analysis demonstrates that the error increases with increasing leaf-to-air water vapour mole fraction difference (Δw), being zero in water vapour saturated air and 4.2% overestimation at Δw of 0.05. Overestimation is approximately twice as large in empirical studies quantifying stomatal O(3) flux from measured leaf or canopy water flux, if neglecting both water vapour-dry air collisions (causing overestimation of leaf conductance) and collisions involving O(3). Correction for transpiration-induced molecular collisions is thus relevant for both empirical research and for large-scale modelling of stomatal O(3) flux across strong spatial Δw gradients.
- Technical University of Munich Germany
- University of Gothenburg Sweden
Models, Molecular, Steam, Ozone, Plant Stomata, Water, Plant Transpiration
Models, Molecular, Steam, Ozone, Plant Stomata, Water, Plant Transpiration
5 Research products, page 1 of 1
- 2002IsAmongTopNSimilarDocuments
- 1964IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2006IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
