Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Alloys an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Alloys and Compounds
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fabrication of hierarchical sheet-on-sheet WO3/g-C3N4 composites with enhanced photocatalytic activity

Authors: Jiayi Chen; Xinyan Xiao; Yi Wang; Zhihao Ye;

Fabrication of hierarchical sheet-on-sheet WO3/g-C3N4 composites with enhanced photocatalytic activity

Abstract

Abstract Novel hierarchical sheet-on-sheet WO3/g-C3N4 (WOCN) composites were successfully fabricated by simple calcination method using acid-treated SrWO4/g-C3N4 as precursors. The morphological observation showed that WO3 nanosheets were closely anchored on the surface of g-C3N4 nanosheets to construct a hierarchical nanostructure. The as-synthesized WOCN composites exhibited a significantly higher photocatalytic activity towards the photocatalytic degradation of rhodamine B (RhB) compared to pristine g-C3N4 and WO3 under simulated sunlight irradiation. The optimum photocatalytic activity of the WOCN at a WO3 mass content of 34.6% was 6.5 and 3.0 times higher than that of pristine WO3 and g-C3N4, respectively. The enhanced photocatalytic activities of WOCN composites were attributed to the formation of hierarchical heterostructure, which provided larger specific surface area, better visible-light absorption capability, reduced the recombination of photogenerated electron-hole pairs and enhanced separation efficiency of charge carriers. A Z-scheme photocatalytic mechanism was proposed according to active species trapping experiments.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 1%
Top 10%
Top 1%