Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://kabru.eecs.um...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://kabru.eecs.umich.edu/pa...
Conference object
Data sources: UnpayWall
https://doi.org/10.1109/rtas.2...
Conference object . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Dynamic Reconfiguration of a Large-Scale Battery System

Authors: Hahnsang Kim; Kang G. Shin;

On Dynamic Reconfiguration of a Large-Scale Battery System

Abstract

Electric vehicles powered with large-scale battery packs are gaining popularity as gasoline price soars. Large-scale battery packs usually consist of an estimated 12,000 battery cells connected in series and parallel, which are susceptible to battery-cell failures. Unfortunately, current battery-management systems are unable to handlethe inevitable battery-cell failures very well. To address this problem, we propose a dynamic reconfiguration framework that monitors, reconfigures, and controls large-scale battery packs online. The framework is built upon a syntactic bypassing mechanism that provides a set of rules for changing the battery-pack configuration, and a semantic bypassing mechanism by which the battery-cell connectivity is reconfigured to recover from a battery-cell failure. In particular, the semantic bypassing mechanism is dictated by constant-voltage-keeping and dynamic-voltage-allowing policies. The former policy is effective in preventing unavoidable voltage drops during the battery discharge, while the latter policy is effective in supplying different amounts of power to meet a wide-range of application requirements. Our experimental evaluation has shown the proposed framework to enable the battery packs to be 9 times as fault-tolerant as a legacy scheme.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%