
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental and numerical analysis of an air-cooled double-lift NH3–H2O absorption refrigeration system


Marcello Aprile

Mario Motta

Tommaso Toppi
Experimental and numerical analysis of an air-cooled double-lift NH3–H2O absorption refrigeration system
Abstract The prototype of an air-cooled double-lift NH3–H2O absorption chiller driven by hot water at low temperature is presented. The main objective of the study is to illustrate the experimental performances of the prototype under different operating conditions. A mathematical model of the cycle is developed, along with a procedure for the identification of otherwise difficult to measure data, with the purpose of providing the complete picture of the internal thermodynamic cycle. The combined experimental and numerical data allowed assessing the effects on the thermodynamic cycle with varying operating conditions. The unit operated steadily with chilled water inlet 12 °C, outlet 7 °C, air temperature between 22 °C and 38 °C, and hot water driving temperatures between 80 °C and 90 °C. The reference cooling capacity at air temperature of 30 °C is 2.5 kW, with thermal COP about 0.3 and electrical COP about 10.
5 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2003IsAmongTopNSimilarDocuments
- 1990IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
