
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Miscible Flooding for Bitumen Recovery with a Novel Solvent
doi: 10.2118/206325-ms
Miscible Flooding for Bitumen Recovery with a Novel Solvent
Abstract Steam injection is an effective heavy oil recovery method, however, poses several environmental concerns. Solvent injection methods are introduced in an attempt to combat these environmental concerns. This paper evaluates the effectiveness of a new solvent (VisRed) in the recovery of a Canadian bitumen and compares its results with toluene. While VisRed is selected due to its high effectiveness as a viscosity reducer even at very low concentrations, toluene is selected due to its high solvent power. Five core flooding experiments were conducted; E1 (Steam flooding), E2 (VisRed flooding), E3 (Toluene flooding), E4 (Steam + Toluene flooding), and E5 (Steam + VisRed flooding). Core samples were prepared by saturating 60% of the pore space with oil samples and 40% with deionized water. The solvents were injected at a 2 ml/min rate, while steam was injected at a 18 ml/min cold water equivalent rate. Produced oil and water samples were collected every 20 min during every experiment. The oil recovery efficiencies of the core flood experiments were analyzed by the emulsion characterization in the produced fluids and the residual oil analysis on the spent rock samples. The best oil recovery of ~30 vol % was obtained for E2 (VisRed) in which VisRed was injected alone. Although similar cumulative recoveries were obtained both for E2 (VisRed) and E3 (Toluene), the amount of VisRed injected [~1 pore volumes (PV)] was half the volume required by toluene (~2 PV). The produced oil quality variations are mainly due to the formation of the water-in-oil emulsions during mainly steam processes (E1, E4, and E5). The increased amount of the polar fractions in the produced oil enhances the formation of the emulsions. These polar fractions are namely asphaltenes and resins. As the amount of the polar fractions in the produce oil increases, more water-in-oil emulsion formation is observed due to the polar-polar interaction between crude oil fractions and water. Consequently, E1 and E5 resulted in more water in oil emulsions. The cost analysis also shows the effectiveness of solvent recovery over steam-solvent recovery processes.
- The University of Texas System United States
5 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
