Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sub-5 nm Ultrasmall Metal–Organic Framework Nanocrystals for Highly Efficient Electrochemical Energy Storage

Authors: Peitao Xiao; Fanxing Bu; Ranran Zhao; Mohamed F. Aly Aboud; Imran Shakir; Yuxi Xu;

Sub-5 nm Ultrasmall Metal–Organic Framework Nanocrystals for Highly Efficient Electrochemical Energy Storage

Abstract

Synthesis of ultrasmall metal-organic framework (MOF) nanoparticles has been widely recognized as a promising route to greatly enhance their properties but remains a considerable challenge. Herein, we report one facile and effective spatially confined thermal pulverization strategy to successfully transform bulk Co-MOF particles into sub-5 nm nanocrystals encapsulated within N-doped carbon/graphene (NC/G) by using conducting polymer coated Co-MOFs/graphene oxide as precursors. This strategy involves a feasible mechanism: calcination of Co-MOFs at proper temperature in air induces the partial thermal collapse/distortion of the framework, while the uniform coating of a conducting polymer can significantly improve the decomposition temperature and maintain the component stability of Co-MOFs, thus leading to the pulverization of bulk Co-MOF particles into ultrasmall nanocrystals without oxidation. The pulverization of Co-MOFs significantly increases the contact area between Co-MOFs with electrolyte and shortens the electron and ion transport pathway. Therefore, the sub-5 nm ultrasmall MOF nanocrystals-based composites deliver an ultrahigh reversible capacity (1301 mAh g-1 at 0.1 A g-1), extraordinary rate performance (494 mAh g-1 at 40 A g-1), and outstanding cycling stability (98.6% capacity retention at 10 A g-1 after 2000 cycles), which is the best performance achieved in all reported MOF-based anodes for lithium-ion batteries.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    124
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
124
Top 1%
Top 10%
Top 1%