Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Catalysis A ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Catalysis A General
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-temperature water–gas shift: Strategy to lower Pt loading by doping ceria with Ca2+ improves formate mobility/WGS rate by increasing surface O-mobility

Authors: Christopher L. Marshall; Donald C. Cronauer; Khalid G. Azzam; Linda Z. Linganiso; Burtron H. Davis; Uschi M. Graham; Gary Jacobs; +1 Authors

Low-temperature water–gas shift: Strategy to lower Pt loading by doping ceria with Ca2+ improves formate mobility/WGS rate by increasing surface O-mobility

Abstract

In one view, the metal–oxide synergy (e.g., Pt metal and cerium oxide) has been explained in terms of the dehydrogenation of formate formed on the surface of the partially reducible oxide (PRO) by Pt across the interface, with H2O participating in the transition state of forward formate decomposition. In this work, Ca-doping of the ceria component in Pt/ceria catalysts was demonstrated by TPR and TPR–XANES measurements to facilitate the temperature of ceria surface shell and bulk reduction steps, and by TPR–XANES to increase the extents of surface shell and bulk reduction of ceria. The results thus confirm, experimentally, past theoretical models, which suggested that divalent elements (e.g., Ca) enhance both O-mobility and reducibility of ceria by weakening the Ce–O bond through lattice strain. This strain was also detected in our XRD measurements. A recent surface diffusion model postulated that increasing oxygen surface diffusion also improves the mobility of O-bound intermediates (e.g., formates, carbonates, carboxylates). In this work, in situ DRIFTS measurements confirm that improved formate decomposition rates were realized over the Ca-doped Pt promoted ceria catalysts possessing higher O-mobility relative to undoped Pt/ceria. In turn, improved LT-WGS rates were observed over the Ca-doped Pt/ceria catalysts. While the precise mechanism is still under debate, the enhanced mobility of O-bound intermediates by Ca-doping is suggested to be responsible for the significant boosts in CO conversion levels and TOFs observed during LT-WGS. Thus, doping ceria with elements like Ca provides a path forward for lowering the precious metal content (e.g., Pt), as well as the rare earth content (e.g., Ce) – catalytic components that are becoming increasingly expensive.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%