
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
GRB Spectra in the complex of synchrotron and Compton processes
GRB Spectra in the complex of synchrotron and Compton processes
Under the steady state condition, the spectrum of electrons is investigated by solving the continuity equation under the complex radiation of both the synchrotron and Compton processes. The resulted GRB spectrum is a broken power law in both the fast and slow cooling phases. On the basis of this electron spectrum, the spectral indices of the Band function in four different phases are presented. In the complex radiation frame, the detail investigation on physical parameters reveals that both the reverse shock photosphere model and the forward shock with strong coupling model can answer the $��\sim -1$ problem. A possible marginal to fast cooling phase transition in GRB 080916C is discussed. The time resolved spectra in different pulses of GRB 100724B, GRB 100826A and GRB 130606B are investigated. We found that the flux is proportional to the peak energy in almost all pulses. The phases for different pulses are determined according to the spectral index revolution. We found the strong correlations between spectral indices and the peak energy in GRB 100826A, which can be explained by the Compton effect in the fast cooling phase. However, the complex scenario predicts a steeper index for the injected electrons, which challenges the acceleration mechanism in GRBs.
32pages, 11 figures
- Yili Normal University China (People's Republic of)
- Yili Normal University China (People's Republic of)
- Yulin Normal University China (People's Republic of)
- Yuxi Normal University China (People's Republic of)
- Institute of High Energy Physics, Chinese Academy of Sciences (中国科学院高能物理研究所)(IHEP),China China (People's Republic of)
High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena
High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena
2 Research products, page 1 of 1
- 2011IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
