Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Physics C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Physics Condensed Matter
Article . 2016 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A first-principles model of copper–boron interactions in Si: implications for the light-induced degradation of solar Si

Authors: José Coutinho; Sven Öberg; Vitor J.B. Torres; E. Wright;

A first-principles model of copper–boron interactions in Si: implications for the light-induced degradation of solar Si

Abstract

The recent discovery that Cu contamination of Si combined with light exposure has a significant detrimental impact on carrier life-time has drawn much concern within the solar-Si community. The effect, known as the copper-related light-induced degradation (Cu-LID) of Si solar cells, has been connected to the release of Cu interstitials within the bulk [Solar Energy Materials & Solar Cells, 147:115-126, 2016]. In this paper, we describe a comprehensive analysis of the formation/dissociation process of the CuB pair in Si by means of first-principles modelling, as well as the interaction of CuB defects with photo-excited minority carriers. We confirm that the long-range interaction between the Cu cation and the B anion has a Coulomb-like behaviour, in line with the trapping-limited diffusivity of Cu observed by transient ion drift measurements. On the other hand, the short-range interaction between the d-electrons of Cu and the excess of negative charge on B produces a repulsive effect, thereby decreasing the binding energy of the pair when compared to the ideal point-charge Coulomb model. We also find that metastable CuB pairs produce acceptor states just below the conduction band minimum, which arise from the Cu level emptied by the B acceptor. Based on these results, we argue that photo-generated minority carriers trapped by the metastable pairs can switch off the Coulomb interaction that holds the pairs together, enhancing the release of Cu interstitials, and acting as a catalyst for Cu-LID.

Keywords

Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
bronze