Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Co-precipitated Ni–Mg–Al catalysts for hydrogen production by supercritical water gasification of glucose

Authors: Sha Li; Liejin Guo; Youjun Lu; Chao Zhu;

Co-precipitated Ni–Mg–Al catalysts for hydrogen production by supercritical water gasification of glucose

Abstract

Abstract Supercritical water gasification (SCWG) is a promising process for hydrogen production from biomass. In this study, a series of Ni–Mg–Al catalysts with different Mg/Al molar ratios has been synthesized by a co-precipitation method for hydrogen production by SCWG of glucose. Effects of Mg addition on the catalytic activity, hydrothermal stability and anti-carbon performance of alumina supported nickel catalyst were investigated. The highly dispersed nickel catalysts prepared by co-precipitation could greatly enhance the gasification efficiency of glucose in supercritical water. Among the tested Ni–Mg–Al catalysts, NiMg 0.6 Al 1.9 showed the highest catalytic activity with the hydrogen yield of 11.77 mmol/g (912% as that of non-catalytic test). NiMg 0.6 Al 1.9 also showed the best hydrothermal stability probably due to the formation of MgAl 2 O 4 . Mg could efficiently improve the anti-carbon ability of Ni–Al catalyst by inhibiting the formation of graphite carbon. It is also confirmed that MgO supported nickel catalyst is not suitable for SCWG process owing to the difficulty on nickel oxides reduction in the precursors and the phase change of MgO to Mg(OH) 2 under the hydrothermal condition.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%