

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Data from: Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L. along a 1,900 km temperate–boreal transect
doi: 10.5061/dryad.001g4
Data from: Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L. along a 1,900 km temperate–boreal transect
1. Occupancy of cold habitats by evergreen species requires structural modification of photosynthetic organs for stress resistance and longevity. Such modifications have been described at inter-specific level while intra-specific variation has been underexplored. 2. To identify structural and anatomical traits that may be adaptive in cold environments, we studied intra-specific variability of needles of Scots pine (Pinus sylvestris L.), a wide-ranging tree, along a 1900 km temperate-boreal transect in Europe. 3. Needles from 20 sites representing mean minimum winter temperatures between -4.0°C and -19.9°C and mean annual temperatures between 8.3°C and -1.7°C were sampled for measurements of leaf mass per area (LMA, g m-2), leaf density (LD, g cm-3) and 30 other morpho-anatomical traits. 4. Needles from cold sites lived longer, were shorter, showed higher LMA and LD, had narrower and more collapse-resistant tracheids, thicker epidermal cells with thicker cell walls, and wider resin ducts occupying larger fraction of needle volume in comparison to needles from warmer sites. 5. Along the steep climatic gradient, needles presented a coordinated phenotypic spectrum of external and internal traits that are largely interpretable in functional, adaptive terms. This intra-specific pattern of co-varying traits provides insight into the adaptive syndrome associated with stress tolerance and extended needle longevity under cold conditions of high latitudes.
Jankowski et al. Data
- Western Sydney University Australia
- Western Sydney University Australia
- University of Minnesota Morris United States
- Lund University Sweden
- Institute of Dendrology Poland
medicine and health care, Life sciences, medicine and health care , foliar tracheids, leaf longevity, anatomical variation, Life Sciences, Medicine, resin ducts, Life sciences
medicine and health care, Life sciences, medicine and health care , foliar tracheids, leaf longevity, anatomical variation, Life Sciences, Medicine, resin ducts, Life sciences
2 Research products, page 1 of 1
- 2022IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 2 - 2views
Data source Views Downloads ZENODO 2 0

