Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Energy Resources Technology
Article . 2021 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Comparative Numerical Study of the Combustion Performance of the Syngas-Fueled HCCI Engine Using a Toroidal Piston, Square Bowl Piston, and Flat Piston Shape at Different Loads

Authors: Kiseong Kim; Kabbir Ali; Seungmook Oh; Yonggyu Lee; Changup Kim;

A Comparative Numerical Study of the Combustion Performance of the Syngas-Fueled HCCI Engine Using a Toroidal Piston, Square Bowl Piston, and Flat Piston Shape at Different Loads

Abstract

Abstract This study analyzes the combustion performance of a syngas-fueled homogenous charge compression ignition (HCCI) engine using a toroidal piston (baseline piston), square bowl, and flat piston shape, at low, medium, and high loads, with a constant compression ratio of 17.1. In this study, the square bowl shape is optimized by reducing the piston bowl depth and squish area ratio (squish area/cylinder cross-sectional area) from 34 to 20, 10, and 2.5% and compared with the flat piston shape and toroidal piston shape. This HCCI engine operates under an overly lean air–fuel mixture condition for power plant usage. ansys forte cfd package with GRI Mech3.0 chemical kinetics is used for combustion analysis, and the calculated results are validated by the experimental results. All simulations are accomplished at maximum brake torque (MBT) by altering the air–fuel mixture temperature at intake valve closing (IVC) (TIVC) with a constant equivalence ratio of 0.27. This study reveals that the main factors that affect the start of combustion (SOC), maximum pressure rise rate (MPRR), combustion efficiency, and thermal efficiency by changing the piston shape are the squish flow and reverse squish flow effects. Therefore, the square bowl piston D is the optimized piston shape that offers low MPRR and high combustion performance for the syngas-fueled HCCI engine, due to the weak squish flow and low heat loss rate through the combustion chamber wall, respectively, when compared with the other piston shapes of square bowl piston A, B, and C, flat piston, and toroidal (baseline) piston shape.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%