Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Non-Cryst...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Non-Crystalline Solids
Article . 1992 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Surface chemistry of multicomponent silicate gels

Authors: Dongsheng S. Wang; Carlo G. Pantano;

Surface chemistry of multicomponent silicate gels

Abstract

Abstract The surface chemistry of a calcium boroaluminosilicate gel was studied and compared with the corresponding behavior of a pure silica gel. The experiments were performed, in situ, by transmission FTIR utilizing high surface area, free-standing, monolithic xerogel foils. The foils could be vacuum-evacuated, heated, and/or exposed to water and organic vapors within the FTIR cell. The spectra of the dehydrated calcium boroaluminosilicate showed only isolated surface silanols (Si-OH) and boranols (B-OH). They were found to be inactive upon subsequent exposure to water vapor, but readily participated in H-bonding with basic organic adsorbates. The frequency shifts associated with the adsorption of organic vapors were lower on the multicomponent surface than on the silica surface. This reveals that the silanols are less interactive, or acidic, on the multicomponent surface. The adsorption of molecular water occurred faster and with greater tenacity on the calcium boroaluminosilicate. This is attributed to the prevalence of surface sites associated with Ca, B, and Al where the chemisorption of water may occur. Some of these sites were revealed by pyridine adsorption studies; i.e., pyridine was found to form coordinate bonds with unsaturated B III and Al III Lewis acid sites. Otherwise, the chemical behavior of Ca and Al on the surface was not directly evident in the FTIR spectra. Finally, the chemisorption of methoxytrimethylsilane was examined and found to occur preferentially at the boranol sites. However, the chemisorbed silanes on the boranols were found to be more easily hydrolyzed than those on the silanols. In general, this study illustrates several principles about the surface chemistry of calcium boroaluminosilicates, and offers an experimental approach for direct examination of multicomponent gel or glass surface chemistry in any multicomponent system that can be synthesized using the alkoxide method.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Average