
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane

A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane
Abstract This paper presents an experimental study of a direct-flame type solid oxide fuel cell (DFFC). The operation principle of this system is based on the combination of a combustion flame with a solid oxide fuel cell (SOFC) in a simple, no-chamber setup. The flame front serves as fuel reformer located a few millimeters from the anode surface while at the same time providing the heat required for SOFC operation. Experiments were performed using 13-mm-diameter planar SOFCs with Ni-based anode, samaria-doped ceria electrolyte and cobaltite cathode. At the anode, a 45-mm-diameter flat-flame burner provided radially homogeneous methane/air, propane/air, and butane/air rich premixed flames. The cell performance reaches power densities of up to 120 mW cm−2, varying systematically with flame conditions. It shows a strong dependence on cell temperature. From thermodynamic calculations, both H2 and CO were identified as species that are available as fuel for the SOFC. The results demonstrate the potential of this system for fuel-flexible power generation using a simple setup.
Maschinenbau
Maschinenbau
3 Research products, page 1 of 1
- 2010IsAmongTopNSimilarDocuments
- 1968IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).67 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
