Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane

Authors: Kronemayer, Helmut; Barzan, Daniel; Horiuchi, Michio; Suganuma, Shigeaki; Tokutake, Yasue; Schulz, Christof; Bessler, Wolfgang G.;

A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane

Abstract

Abstract This paper presents an experimental study of a direct-flame type solid oxide fuel cell (DFFC). The operation principle of this system is based on the combination of a combustion flame with a solid oxide fuel cell (SOFC) in a simple, no-chamber setup. The flame front serves as fuel reformer located a few millimeters from the anode surface while at the same time providing the heat required for SOFC operation. Experiments were performed using 13-mm-diameter planar SOFCs with Ni-based anode, samaria-doped ceria electrolyte and cobaltite cathode. At the anode, a 45-mm-diameter flat-flame burner provided radially homogeneous methane/air, propane/air, and butane/air rich premixed flames. The cell performance reaches power densities of up to 120 mW cm−2, varying systematically with flame conditions. It shows a strong dependence on cell temperature. From thermodynamic calculations, both H2 and CO were identified as species that are available as fuel for the SOFC. The results demonstrate the potential of this system for fuel-flexible power generation using a simple setup.

Keywords

Maschinenbau

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 10%