
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Highly monodisperse sub-nanometer and nanometer Ru particles confined in alkali-exchanged zeolite Y for ammonia decomposition

Highly monodisperse sub-nanometer and nanometer Ru particles confined in alkali-exchanged zeolite Y for ammonia decomposition
Abstract Nanometer- and sub-nanometer-sized Ru particles were deposited on four different alkali-exchanged zeolite Y supports (H-Y, Na-Y, K-Y, and Rb-Y) by an ion-exchange method followed by a calcination treatment under vacuum. The average particle size of the Ru-based catalysts (Ru/M-Y: M = H, Na, K, and Rb) was approximately 1 nm, with the majority of Ru particles being highly monodisperse with a size in the sub-nanometer range. The oxygen-deficient environment during calcination and the well-defined repeated pore structure of zeolite are thought to have strongly affected the formation of Ru particles by restraining particle growth inside the upper/sodalite cages of the zeolite Y matrix. X-ray absorption spectroscopic analysis revealed that the Ru particles were highly reducible at low temperatures and were low coordinated with short Ru O bonds. The effect of surface acidity on the catalytic activity of Ru/M for ammonia decomposition was investigated. Ammonia temperature-programmed desorption analysis suggested that the acidity of the alkali-exchanged zeolite Y increased (H > Na > K > Rb) with an increase in the electronegativity of the alkali cation. Among all the catalysts, H-Y exhibited the highest acidity because of the presence of strong Bronsted acid sites. The catalytic activities of the Ru/M-Y catalysts for ammonia decomposition in the gas phase decreased in the order of Ru/Rb-Y > Ru/K-Y > Ru/Na-Y > Ru/H-Y, that is, the lower the acidity, the higher is the catalytic activity. This was correlated to increased electron density of the surrounding Ru active sites, which likely facilitated nitrogen desorption from the catalyst surface. Finally, the surface intermediates formed under ammonia decomposition conditions were identified by in situ diffuse reflectance infrared Fourier transform spectroscopy. NH/NH2 surface intermediates were identified in the presence of Ru with weaker N H bonds in the case of Ru/Rb-Y compared to the case of Ru/H-Y. Overall, the high catalytic activity of the Ru/Rb-Y catalyst for ammonia decomposition was mainly because of the high basicity of the Rb-Y zeolite and the confined nanometer- and sub-nanometer-sized Ru particles, which led to a high Ru dispersion, open pore structure of the zeolite, and strong metal to support interaction between the Ru active sites and the Rb-Y zeolite support.
- Korean Association Of Science and Technology Studies Korea (Republic of)
- Yonsei University Korea (Republic of)
- Korea University Korea (Republic of)
- Kyung Hee University Korea (Republic of)
- Kyung Hee University Korea (Republic of)
4 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
- 1998IsAmongTopNSimilarDocuments
- 2000IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).107 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
