Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energy Materia...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deposition pressure dependent structural and optoelectronic properties of ex-situ boron-doped poly-Si/SiOx passivating contacts based on sputtered silicon

Authors: Wenjie Wang; Wenjie Wang; Thien N. Truong; Andres Cuevas; Harvey Guthrey; Daniel Macdonald; Hieu T. Nguyen; +4 Authors

Deposition pressure dependent structural and optoelectronic properties of ex-situ boron-doped poly-Si/SiOx passivating contacts based on sputtered silicon

Abstract

Abstract Among common methods to form polycrystalline silicon (poly-Si) films for passivating-contact solar cells, physical vapor deposition, in particular sputtering, is the safest one as it does not require any toxic gaseous precursors. One of the critical parameters to control the properties of sputtered silicon films is their deposition pressure. In this work, structural and optoelectronic characteristics of ex-situ boron-doped poly-Si/SiOx passivating contacts, formed from sputtered intrinsic amorphous silicon (a-Si) deposited at different pressures on top of SiOx/c-Si substrates and subjected to a high-temperature boron diffusion step, are investigated. The deposition rate and density of the as-deposited a-Si films increase with reducing pressure. Low-temperature photoluminescence spectra captured from the as-deposited samples at different pressures do not show typical emissions from hydrogenated a-Si. Meanwhile, their Fourier-transform infrared absorption spectra all show Si–H stretching modes, indicating that hydrogen had been initially incorporated into the chemical SiOx layers and eventually hydrogenated the a-Si/SiOx interfaces during the sputtering process. After the high-temperature boron-diffusion step, all hydrogen-related peaks disappear. Lower pressure films (1.5 and 2.5 mTorr) show more consistent improved performance after hydrogen treatments, compared to higher pressure films (4 and 5 mTorr). The resultant passivating contacts at 2.5 mTorr achieve a low single-side recombination current density Jo of ~9 fA/cm2, whereas their contact resistivity is still low at 15 mΩ cm2.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
bronze