Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Earth Surface
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrodynamics of mountain‐river confluences and its relationship to sediment transport

Authors: S. Guillén Ludeña; Z. Cheng; G. Constantinescu; M. J. Franca;

Hydrodynamics of mountain‐river confluences and its relationship to sediment transport

Abstract

AbstractMountain confluences are characterized by narrow and steep tributaries that provide important sediment load to the confluence, whereas the main channel supplies the dominant flow discharge. This results in a marked bed discordance between the tributary and main channel which induces key differences in the hydromorphodynamics of the confluence when compared to concordant bed and some common types of discordant bed confluences. The processes of initiation and maintenance of the morphology of confluences are still unknown, and research linking morphodynamics and hydrodynamics of river confluences is required to understand these phenomena. In this paper, eddy‐resolving simulations based on laboratory experiments made in a live‐bed model of a mountain‐river confluence are used to provide a detailed description of flow hydrodynamics and implications for morphodynamics. The test case study corresponds to a confluence with an angle of 70°. Numerical simulations are performed for two extreme bathymetric conditions: those at the start of the experiment and when equilibrium morphological conditions are reached. Results of the simulations and experimental observations are used to make inferences on erosion mechanisms during the initial and final states of the erosion/deposition process. The relationship between the coherent structures present in the near‐bed region in the instantaneous and mean flow fields and sediment entrainment/transport is described. The present paper demonstrates the critical role played by large‐scale turbulence generated in the shear layers forming on the side of the tributary flow as it enters the main channel, by the main vortex forming over the discordant bed region surrounding the downstream end of the tributary, as well as by several near‐bed vortices induced by the deflection of the tributary flow by the incoming flow in the main channel. The predicted patterns of bed shear stress are linked to pathways of sediment movement documented in the laboratory experiments, providing a link between the flow and sediment transport.

Countries
Switzerland, Spain
Keywords

laboratory experiments, 2506.07 Geomorfología, Laboratory experiments, rivers hydrodynamics, 2508.01 Erosión (Agua), 2204.04 Mecánica de Fluidos, River confluences, numerical simulations, Rivers hydrodynamics, river confluences, Numerical simulations, 2506.18 Sedimentología, Ingeniería Hidráulica

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
Green