Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industrial Electronics
Article . 2011 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Direct Torque Control Scheme for a Sensorless Five-Phase Induction Motor Drive

Authors: Zheng, L.; Fletcher, J.E.; Williams, B.W.; He, X.;

A Novel Direct Torque Control Scheme for a Sensorless Five-Phase Induction Motor Drive

Abstract

Direct torque control is a variable-structure control strategy with simplicity, fast response, and tolerance to motor parameter variation, which provides direct control of stator flux and electromagnetic torque by optimally selecting the inverter states in each sampling period. For five-phase drives, the increased number of voltage vectors offers greater flexibility in optimizing the selection of the inverter states, thereby accomplishing more precise control of the stator flux and torque. Nevertheless, the large number of inverter states means that a more elaborate and complex selection criterion is needed. The following two aspects, which are not issues for three-phase drives, are taken into account in designing switching-table-based direct torque control for five-phase drives. First, the low-frequency harmonic currents due to the auxiliary vector plane need to be eliminated. Second, full utilization of the dc-link voltage is desired. A novel switching-table-based direct torque controller fulfilling these objectives is proposed and is combined with a speed-adaptive variable-structure observer. Experimental results substantiate the effectiveness of the proposed sensorless direct torque controller.

Country
United Kingdom
Related Organizations
Keywords

629, Electrical engineering. Electronics Nuclear engineering, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    165
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
165
Top 1%
Top 1%
Top 1%