Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Aarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical Review A
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review A
Article . 2014 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Divalent Rydberg atoms in optical lattices: Intensity landscape and magic trapping

Authors: Andrei Derevianko; Turker Topcu;

Divalent Rydberg atoms in optical lattices: Intensity landscape and magic trapping

Abstract

We develop a theoretical understanding of trapping divalent Rydberg atoms in optical lattices. Because the size of the Rydberg electron cloud can be comparable to the scale of spatial variations of laser intensity, we pay special attention to averaging optical fields over the atomic wavefunctions. Optical potential is proportional to the ac Stark polarizability. We find that in the independent particle approximation for the valence electrons, this polarizability breaks into two contributions: the singly ionized core polarizability and the contribution from the Rydberg electron. Unlike the usually employed free electron polarizability, the Rydberg contribution depends both on laser intensity profile and the rotational symmetry of the total electronic wavefunction. We focus on the $J=0$ Rydberg states of Sr and evaluate the dynamic polarizabilities of the 5s$n$s($^1S_0$) and 5s$n$p($^3P_0$) Rydberg states. We specifically choose Sr atom for its optical lattice clock applications. We find that there are several magic wavelengths in the infrared region of the spectrum at which the differential Stark shift between the clock states (5s$^2$($^1S_0$) and 5s5p($^3P_0$)) and the $J=0$ Rydberg states, 5s$n$s($^1S_0$) and 5s$n$p($^3P_0$), vanishes. We tabulate these wavelengths as a function of the principal quantum number $n$ of the Rydberg electron. We find that because the contribution to the total polarizability from the Rydberg electron vanishes at short wavelengths, magic wavelengths below $\sim$1000 nm are ``universal" as they do not depend on the principal quantum number $n$.

Keywords

Atomic Physics (physics.atom-ph), FOS: Physical sciences, Physics - Atomic Physics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
bronze