
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A compact, low-power, and fast pulse-width modulation based digital pixel sensor with no bias circuit

A compact, low-power, and fast pulse-width modulation based digital pixel sensor with no bias circuit
Abstract A high-speed and compact in-pixel light-to-time converter (LTC), with low power consumption and wide dynamic range is presented. By using the proposed LTC, a digital pixel sensor (DPS) based on a pulse-width modulation (PWM) scheme has been designed and fabricated in a standard 180-nm, single-poly, six-metal complementary metal oxide semiconductor (CMOS) technology. The prototype chip consists of a 16 × 16 pixel array with an individual pixel size of 21 × 21 μm 2 and a fill factor of 39% in the 180-nm CMOS technology. Experimental results show that the circuit operates at supply voltages down to 800 mV and achieves an overall dynamic range of more than 140 dB. The power consumption at 800 mV supply and room light intensity is approximately 2.85 nW.
- Linköping University Sweden
- Isfahan University of Technology Iran (Islamic Republic of)
- Isfahan University of Technology Iran (Islamic Republic of)
5 Research products, page 1 of 1
- 2009IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
