Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mechanical stress as the main factor in skull design of the fossil reptile Proterosuchus (Archosauria)

Authors: Torsten Rossmann; Ulrich Witzel; Holger Preuschoft;

Mechanical stress as the main factor in skull design of the fossil reptile Proterosuchus (Archosauria)

Abstract

Biomechanical methods reveal construction principles in natural structures. To understand the process of shaping in the skeleton of vertebrates we assume that mechanical constraints are one of the most important factors. We begin by testing this hypothesis with simple models, which are analyzed using the Finite-Element- Method (FEM) with only minor basic rules for support and force initiation. The aim of this study of the crocodile-like fossil Proterosuchus is to obtain a simplified model, which is, in shape and internal structure, as close as possible to the natural counterpart. Our results of the virtual 2D- and 3D-model allow us to predict the origin of natural structures. This leads to a possible reconstruction of the soft tissues in the skull of Proterosuchus.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average