Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurocomputingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurocomputing
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new nonlocal means based framework for mixed noise removal

Authors: Jian Yang; Lei Luo; Kang Yang; Jielin Jiang; Jielin Jiang; Yadang Chen; Zhixin Yang;

A new nonlocal means based framework for mixed noise removal

Abstract

Abstract Many image-denoising approaches seek to remove either additive white Gaussian noise (AWGN) or impulse noise (IN), because both types are easier to process when considered separately. However, images can be corrupted by a mixture of AWGN and IN during image acquisition and transmission. The major difficulty of mixed noise removal arises through the complex distribution of noise, which cannot be fitted by a simple parametric model. In this paper, a new nonlocal means based framework (NMF) is proposed. A median-type filter is used to detect the locations of outlier pixels; these pixels are then replaced by their nonlocal means, which makes the mixed noise distribution approximately Gaussian. To prove the effectiveness of our NMF, a low rank approximation combined with NMF (LRNM) model is presented for mixed noise removal. In the LRNM, we group similar nonlocal patches in a matrix and apply a low rank approximation to reconstruct the clean image. Gradient regularization is added to better preserve the image texture details. A convolutional neural network (CNN) combined with the NMF (NMF-CNN) is also presented, to prove the generality of the NMF. Experimental results show that LRNM and NMF-CNN achieve a strong mixed noise removal performance and also produce visually pleasing denoising results.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%