Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Composites Part B En...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Composites Part B Engineering
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fresh and anisotropic-mechanical properties of 3D printable ultra-high ductile concrete with crumb rubber

Authors: Jianzhuang Xiao; Jianzhuang Xiao; Can Cui; Junhong Ye; Jiangtao Yu; Jiangtao Yu; Kequan Yu;

Fresh and anisotropic-mechanical properties of 3D printable ultra-high ductile concrete with crumb rubber

Abstract

Abstract This study developed a novel ultra-high ductile concrete (UHDC) for 3D concrete printing, which was modified using crumb rubber to possess high ductility. Flowability tests were conducted to determine optimal open time range for continuous printing. A series of mechanical tests, including uniaxial tensile test, compressive test, flexural test and double shear test, were carried out to investigate the anisotropic-mechanical properties of the printed UHDC. The results indicate that the tensile strength, flexural strength and shear strength of the printed specimens were slightly lower than those of mold-cast specimens, while reverse tendency was observed in compressive strength. It is of interest that the deformability and energy dissipation of the printed UHDC at some directions are higher than those of mold-cast UHDC. Additionally, it is found that the printed UHDC performed minimal anisotropy in flexural strength, but significant anisotropy in flexural deformability, compressive and flexural energy dissipation capacity.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    148
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
148
Top 1%
Top 10%
Top 0.1%