
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhanced hydrogen production in co-gasification of sewage sludge and industrial wastewater sludge by a pilot-scale fluidized bed gasifier

Enhanced hydrogen production in co-gasification of sewage sludge and industrial wastewater sludge by a pilot-scale fluidized bed gasifier
Abstract This research provides a perspective on sludge-to-energy using sewage sludge (SS) and industrial wastewater sludge (IS) co-gasification in a pilot-scale fluidized bed gasifier with temperature controlled at (600–800 °C) using IS addition ratio (0%–60%), and steam-to-biomass ratio (S/B) (0–1.0). The experimental results show that the increase in thermal reaction activity occurred in concordance with the increase in the IS addition. The explanation for such phenomena is that relatively high catalytic Fe/Mn content in industrial wastewater sludge could lower the activation energy. Hydrogen production was increased from 9.1% to 11.94% with an increase in industrial wastewater sludge ratios from 0% to 60%. The produced gas heating value ranged from 4.84 MJ/Nm3 to 5.11 MJ/Nm3, which was coupled with the cold gas efficiency (CGE) ranging from 33.91% to 36.15%. Enhanced hydrogen production in sewage sludge and industrial wastewater sludge co-gasification is investigated in this study.
- National Central University Taiwan
4 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
