Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Rothamsted Repositor...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CATENA
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fingerprinting sub-basin spatial sediment sources using different multivariate statistical techniques and the Modified MixSIR model

Authors: Collins, A. L.; Nosrati, K.; Madankan, M.;

Fingerprinting sub-basin spatial sediment sources using different multivariate statistical techniques and the Modified MixSIR model

Abstract

Abstract Information on the relative contributions of sediment from different sources is needed to target sediment control strategies to prevent excess sediment delivery to receptors like dam reservoirs. The overarching scientific objective of this study was therefore to apportion sub-basin spatial source contributions to the supply of fine sediment in an erodible mountainous basin in north-eastern Iran to inform management. The technical objective was to satisfy the scientific objective using a source fingerprinting procedure based on composite signatures selected by different statistical tests. Nine potential geochemical tracers were measured on 21 sediment samples collected to characterise the three sub-basin spatial sediment sources and seven sediment samples collected at the outlet of the main basin. The statistical analysis employed to select three different composite fingerprints for discriminating the sub-basin sediment sources comprised: (1) the Kruskal–Wallis H test (KW-H), (2) a combination of KW-H and discriminant function analysis (DFA), and (3) a combination of KW-H and principal components & classification analysis (PCCA). A Bayesian un-mixing model was used to ascribe sub-basin source contributions using the three composite fingerprints. Using KW-H, the respective relative contributions from sub-basins 1, 2 and 3 were estimated as 45.6%, 3.8% and 50.6%, compared to 46.8%, 18.8% and 34.4% using KW-H and DFA, and 61%, 2.5% and 36.5% using KW-H and PCCA. Kolmogorov-Smirnov test pairwise comparisons of the distributions of predicted source proportions generated using different composite signatures confirmed statistically significant differences. The root mean square difference between the predicted source proportions based on different composite signatures was ~ 12%. This study therefore provides more evidence that source tracing studies should deploy a number of composite signatures selected using independent statistical tests to permit appraisal of the consistencies or otherwise in predicted source contributions based on the tracers used. The outputs of this preliminary study will be used to inform the spatial targeting of sediment mitigation.

Country
United Kingdom
Related Organizations
Keywords

Geochemical tracers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
Green