
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture
doi: 10.5281/zenodo.2672327 , 10.5281/zenodo.2862897 , 10.5281/zenodo.2661987 , 10.5281/zenodo.2862896 , 10.5281/zenodo.2666600 , 10.5281/zenodo.2814542 , 10.5281/zenodo.2672328 , 10.5281/zenodo.2825673 , 10.5281/zenodo.2831250 , 10.5281/zenodo.2814541 , 10.5281/zenodo.2664611 , 10.5281/zenodo.2828578 , 10.5281/zenodo.2663652 , 10.5281/zenodo.2664612 , 10.5281/zenodo.2663653 , 10.5281/zenodo.1093640 , 10.5281/zenodo.2840654 , 10.5281/zenodo.2665605 , 10.5281/zenodo.2665604 , 10.5281/zenodo.2661988 , 10.5281/zenodo.2840653 , 10.5281/zenodo.2828579 , 10.5281/zenodo.2813046 , 10.5281/zenodo.2831251 , 10.5281/zenodo.2825672 , 10.5281/zenodo.2663039 , 10.5281/zenodo.2813045 , 10.5281/zenodo.1093639 , 10.5281/zenodo.2666601 , 10.5281/zenodo.2663040
doi: 10.5281/zenodo.2672327 , 10.5281/zenodo.2862897 , 10.5281/zenodo.2661987 , 10.5281/zenodo.2862896 , 10.5281/zenodo.2666600 , 10.5281/zenodo.2814542 , 10.5281/zenodo.2672328 , 10.5281/zenodo.2825673 , 10.5281/zenodo.2831250 , 10.5281/zenodo.2814541 , 10.5281/zenodo.2664611 , 10.5281/zenodo.2828578 , 10.5281/zenodo.2663652 , 10.5281/zenodo.2664612 , 10.5281/zenodo.2663653 , 10.5281/zenodo.1093640 , 10.5281/zenodo.2840654 , 10.5281/zenodo.2665605 , 10.5281/zenodo.2665604 , 10.5281/zenodo.2661988 , 10.5281/zenodo.2840653 , 10.5281/zenodo.2828579 , 10.5281/zenodo.2813046 , 10.5281/zenodo.2831251 , 10.5281/zenodo.2825672 , 10.5281/zenodo.2663039 , 10.5281/zenodo.2813045 , 10.5281/zenodo.1093639 , 10.5281/zenodo.2666601 , 10.5281/zenodo.2663040
Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture
{"references": ["A. B. Little and S. Garimella, \"Comparative assessment of alternative\ncycles for waste heat recovery and upgrade,\" Energy, vol. 36, pp.\n4492-4504, 2011.", "C. Zamfirescu and I. Dincer, \"Thermodynamic analysis of a novel\nammonia\u2013water trilateral Rankine cycle,\" Thermochimica Acta, vol. 477,\npp. 7-15, 2008.", "A. Khaliq, \"Exergy analysis of gas turbine trigeneration system for\ncombined production of power and heat and refrigeration,\" Int. J. Refrig.,\nvol. 32, pp. 534-545, 2009.", "O. M. Ibrahim, \"Design consideration for ammonia\u2013water Rankine\ncycle,\" Energy, vol. 21, pp. 835-841, 1996.", "M. Jonsson and J. Yan, \"Ammonia\u2013water bottoming cycles: a comparison\nbetween gas engines and gas diesel engines as prime movers,\" Energy, vol.\n26, pp. 31-44, 2001.", "V. A. Prisyazhniuk, \"Alternative trends in development of thermal power\nplant,\" Appl. Therm. Eng., vol. 28, pp. 190-194, 2008.", "N. Kiani, A. Akisawa, and T. Kashiwagi, \"Thermodynamic analysis of\nloadleveling hyper energy converting and utilization system,\" Energy, vol.\n33, pp. 400-409, 2008.", "P. Roy, M. D\u00e9silets, N. Galanis, H. Nesreddine, and E. Cayer,\n\"Thermodynamic analysis of a power cycle using a low-temperature\nsource and a binary NH3-H2O mixture as working fluid,\" Int. J. Therm.\nSci., vol. 49, pp. 48-58, 2010.", "P. Bombarda, C. M. Invernizzi, and C. Pietra, \"Heat recovery from Diesel\nengines: A thermodynamic comparison between Kalina and ORC cycles,\"\nApp. Therm. Eng., vol. 30, pp. 212-219, 2010.\n[10] X. Shi and D. Che, \"A combined power cycle utilizing low-temperature\nwaste heat and LNG cold energy,\" Energy, vol. 50, pp. 567-575, 2009.\n[11] J. Wang, Z. Yan, and M. Wang, \"Thermodynamic analysis and\noptimization of an ammonia-water power system with LNG (liquefied\nnatural gas) as its heat sink,\" Energy, vol. 50, pp. 513-522, 2013.\n[12] A. Bejan, Advanced Engineering Thermodynamics, 3rd ed., John Wiley &\nSons, New York. NY, USA, 2006.\n[13] A. Bejan, G. Tsatsaronis, and M. Moran, Thermal Design and\nOptimization, John Wiley & Sons, New York, NY, USA, 1996.\n[14] N. Lior and N. Zhang, \"Energy, exergy, and second law performance\ncriteria,\" Energy, vol. 32, pp. 281-296, 2007.\n[15] D. Tarlet, Y. Fan, S. Roux, and L. Luo, \"Entropy generation analysis of a\nmini heat exchanger for heat transfer intensification,\" Exp. Therm. Fluid\nSci., in press, 2013.\n[16] E. A. Sciubba, \"A minimum entropy generation procedure for the discrete\npseudo-optimization of finned-tube heat exchangers,\" Rev. Gen. Therm.,\nvol. 35, pp. 517-525, 1996.\n[17] P. Naphon, \"Second law analysis on the heat transfer of the horizontal\nconcentric tube heat exchanger,\" Int. Commun. Heat Mass, vol. 33, pp.\n1029-1041, 2006.\n[18] J. Y. San, \"Second-law performance of heat exchangers for waste heat\nrecovery,\" Energy, vol. 35, pp. 1936-1945, 2010.\n[19] B. David, J. Ramousse, and L. Luo, \"Optimization of thermoelectric heat\npumps by operating condition management and heat exchanger design,\"\nEnerg. Convers. Manage., vol. 60, pp. 125-133, 2012.\n[20] G. Giangaspero and E. Sciubba, \"Application of the entropy generation\nminimization method to a solar heat exchanger: A pseudo-optimization\ndesign process based on the analysis of the local entropy generation\nmaps,\" Energy, vol. 58, pp. 52-65, 2013.\n[21] K. H. Kim, C. H. Han and K. Kim, \"Effects of ammonia concentration on\nthe thermodynamic performances of ammonia-water based power cycles,\"\nThermochimica Acta, vol. 530, pp. 7-16, 2012.\n[22] K. H. Kim, C. H. Han, and K. Kim, \"Comparative exergy analysis of\nammonia-water based Rankine cycles with and without regeneration,\" Int.\nJ. Exergy, vol. 12, pp. 344-361,2013\n[23] K. H. Kim and K. C. Kim, \"Thermodynamic performance analysis of a\ncombined power cycle using low grade heat source and LNG cold\nenergy,\" App. Therm. Eng., in press, 2014.\n[24] K. H. Kim, H. J. Ko, and K. Kim, \"Assessment of pinch point\ncharacteristics in heat exchangers and condensers of ammonia\u2013water\nbased power cycles, Appl. Energy, vol. 113, pp. 970-981, 2014.\n[25] K. H. Kim, K. Kim, and H. J. Ko, \"Entropy and exergy analysis of a heat\nrecovery vapor generator for ammonia-water mixtures,\" Entropy, vol. 16,\npp. 2056-2070, 2014.\n[26] F. Xu and D. Y. Goswami, \"Thermodynamic properties of ammonia\u2013\nwater mixtures for power-cycle application,\" Energy, vol. 24, pp. 525-536,\n1999."]}
This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.
exergy, Entropy, heat exchanger., ammonia-water mixture
exergy, Entropy, heat exchanger., ammonia-water mixture
3 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
