Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Materials R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Materials Research
Article . 2011 . Peer-reviewed
License: Trans Tech Publications Copyright and Content Usage Policy
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preparation and its Silica Wafer CMP Performance of Cationic Polyelectrolyte Modified Benzoguanamine Formaldehyde/SiO<sub>2</sub> Composite Abrasives Slurry

Authors: Bin Shan Zhao; Xue Feng Xu; Quan Guo; Yu Zhi Yang; Wei Peng;

Preparation and its Silica Wafer CMP Performance of Cationic Polyelectrolyte Modified Benzoguanamine Formaldehyde/SiO<sub>2</sub> Composite Abrasives Slurry

Abstract

In this paper, the adsorption characteristics of cationic polyelectrolyte PDADMAC on BGF particles and Zeta potential of BGF particles have been investigated. A new type of composite abrasive slurry was obtained with cationic polyelectrolyte modified BGF particles and its polishing performance was studied. Experimental results showed that the Zeta potential of the modified BGF particles was changed from negative to positive and the maximum value (+35mv) was obtained when the adsorption saturation was achieved, and the adsorption capacity of SiO2 abrasives on BGF particles was improved significantly as well. The material removal rate was 469nm/min with the modified BGF/ SiO2 composite abrasives slurry containing 5% SiO2 and 3% modified BGF particles, increasing by 47% and 89% than those of the unmodified BGF/SiO2 composite abrasives slurry (319nm/min) and the single silica abrasives slurry (248nm/min), respectively.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average