Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In-Flight Rotorblade Tracking Control for Helicopters Using Active Trailing-Edge Flaps

Authors: J.-B. Maurice; Walter Fichter; Oliver Dieterich; Peter Konstanzer; Frank A. King;

In-Flight Rotorblade Tracking Control for Helicopters Using Active Trailing-Edge Flaps

Abstract

This paper presents a new active in-flight rotorblade tracking control system for helicopters equipped with trailing-edge flap actuators on the rotor blades. The objective of the in-flight rotorblade tracking controller is to minimize vibrations in the helicopter cabin and vibratory loads at the rotor hub induced by static blade dissimilarities. The control design is based on a steady-state transfer matrix from flap inputs to vibration outputs, which is first identified experimentally and then symmetrized. For this design model, an analytically derived Moore–Penrose pseudoinverse, which plays a key role in overcoming restrictions of existing approaches, such as the dependency on full-rank transfer matrices, is used. The system is verified through flight tests carried out with a full-scale experimental helicopter. The results demonstrate that the presented in-flight tracking system effectively minimizes the tracking error induced vibrations.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average