Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Modeling
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pressure-induced improvement in symmetry and change in electronic properties of SnSe

Authors: Wei Li; Wang Yu; Jun-Ming Liu; Qinyu He; Xiaoyan Yu; Jingjing Peng;

Pressure-induced improvement in symmetry and change in electronic properties of SnSe

Abstract

To explore the structural and electronic properties of SnSe under pressure, we applied hydrostatic pressure from 0 to 8 GPa to a fully relaxed SnSe cell sample based on plane-wave pseudopotential density functional theory. The calculated results indicate that the structure of SnSe changes gradually from an irregular zigzag structure with low symmetry to a B1-like structure with regular arrangement and high symmetry under pressure. The lattice parameters and cell volume of SnSe decrease monotonically as the applied pressure increases. The energy band gap of SnSe becomes narrow under pressure and is finally closed at 6.1 GPa. Moreover, we found that SnSe exhibits non-magnetic and semi-metallic features based on analyzing its electronic state density and spin state density. This can be attributed to the decrease in the lattices constants and the enhancement of the Sn-Se bond interaction under pressure, which causes the density of electronic states to increase near the Fermi surface. Finally, the charge distribution between Se-Sn-Se along the c-axis changes gradually from asymmetric to symmetric as the pressure is increased to 6.1 GPa and beyond. This implies that enhancement of the structure symmetry of SnSe can lead to a symmetrical distribution of charges, which further affects the bonding characteristics of the Sn-Se bond.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average