Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Morphological Contributions to Interfacial Charge Trapping and Nongeminate Recombination in Polymer Solar Cells Revealed by UV Light Soaking

Authors: Griffin Canning; Alan K. Thomas; David H. Dunlap; orcid bw John K. Grey;
John K. Grey
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

John K. Grey in OpenAIRE

Morphological Contributions to Interfacial Charge Trapping and Nongeminate Recombination in Polymer Solar Cells Revealed by UV Light Soaking

Abstract

Nongeminate charge recombination occurs over a broad range of time scales in polymer solar cells and represents a serious loss channel for the performance and lifetime of devices. Multiple factors influence this process, including changes in morphology and formation of permanent defects, but individual contributions are often difficult to resolve from conventional experiments. We use intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) to investigate nongeminate charge recombination in blends of poly[2,6-(4,4-bis-(2-ethylhexyl)-4 H-cyclopenta [2,1- b;3,4- b']dithiophene)- alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) solar cells. PCPDTBT/PCBM devices are exposed to varying doses of UV light resonant with PCBM to induce small perturbations in the thin film morphology, namely local heating. IMPS/IMVS sweeps display signatures unique to degradation, that is, photocurrent and photovoltage leading the excitation light modulation appearing as positive phase shifts or 1st quadrant features in Bode and Nyquist representations, respectively. We assign this component to interface charging at purified PCPDTBT/PCBM phase boundaries that trap mobile charges and facilitate nongeminate recombination. Time- and frequency-domain drift-diffusion simulations are then used to model the perturbed photocurrent responses that show good agreement with experiments. Trap occupancies and their impact of photocurrent production are investigated using variable background (dc) excitation light intensities revealing increases of the 1st quadrant component in devices irradiated for longer times. No evidence of chemical degradation was observed from molecular spectroscopy and imaging experiments, and we conclude that morphological changes are chiefly responsible for larger nongeminate charge recombination yields as devices age. Lastly, we propose that the 1st quadrant IMPS/IMVS is a universal signature of morphology-related degradation, although its relative contribution may vary between material systems.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
bronze
Upload OA version
Are you the author? Do you have the OA version of this publication?