Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Catalysis Kinetics and Porous Analysis of Rolling Activated Carbon-PTFE Air-Cathode in Microbial Fuel Cells

Authors: Heng Dong; Hongbing Yu; Xin Wang;

Catalysis Kinetics and Porous Analysis of Rolling Activated Carbon-PTFE Air-Cathode in Microbial Fuel Cells

Abstract

The microbial fuel cell (MFC), being an environment-friendly technology for wastewater treatment, is limited by low efficiency and high cost. Power output based on capital cost had been greatly increased in our previous work by introducing a novel activated carbon (AC) air-cathode (ACAC). The catalysis behavior of this ACAC was studied here based on catalysis kinetics and pore analysis of both carbon powders and catalyst layers (CLs). Plain AC (AC1#), ultracapacitor AC (AC2#), and non-AC (XC-72) powders were used as catalysts. The electron transfer number (n) of oxygen reduction reaction (ORR) with CLs increased by 5-23% compared to those n values of corresponding carbon powders before being rolled to CLs with PTFE, while the n value of Pt/C decreased by 38% when it was brushed with Nafion as the CL, indicating that rolling procedure with PTFE binder substantially increased the catalytic activity of carbon catalysts. Two-four times larger in micropore area of AC powders than non-AC powder resulted in 1.3-1.9 times increase in power density of MFCs. In addition, more uniform distribution of microporosity was found in AC1# than in AC2#, which could be the reason for the 25% increase in power density of ACAC1# (1355 ± 26 mW·m(-2)) compared to 1086 ± 8 mW·m(-2) of ACAC2#.

Related Organizations
Keywords

Bioelectric Energy Sources, Catalysis, Kinetics, Charcoal, Electrodes, Oxidation-Reduction, Polytetrafluoroethylene, Porosity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    209
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
209
Top 1%
Top 1%
Top 1%