
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cynara cardunculus a novel substrate for solid-state production of Aspergillus tubingensis cellulases and sugar hydrolysates

handle: 2067/45702 , 2067/42378 , 2607/42378
Abstract The production of seed oils from Cynara cardunculus generates huge amounts of lignocellulosic residues which can be exploited according to a cascade approach. In this paper, residual cardoon biomass (RCB) was tested as a growth substrate for the solid-state production of cellulolytic cocktails by species known to produce glucose-tolerant β-glucosidase isoenzymes. Best productions were obtained with 10-d-old Aspergillus tubingensis cultures on RCB supplemented with wheat bran (200 g kg−1) yielding β-glucosidase and endo-β-1,4-glucanase activities as high as (25 and 4) IU g−1, respectively, and 4 FPU g−1. The saccharification performance of the obtained cocktail tested on acid-catalysed steam-exploded RCB at low solid loading (25 g dm−3) was around 53% at 20 FPU g−1 cellulose. These performance were significantly enhanced by adding the xylanase-rich NS 22083 commercial formulation, reaching glucose yields higher than 80% after 72 h incubation. The use of the catalytic additive was optimized by a statistical approach, based on factorial analysis. A comparison of the performance of the A. tubingensis reinforced cocktail with the Cellic®CTec2 taken as benchmark formulation was done at the same enzyme load and performed at industrially relevant solid loadings, namely at (100 and 200) g dm−3. This comparison showed that Cellic®CTec2 led to only slightly higher glucose yields while an opposite outcome was observed for xylose yields, irrespective of the solid loading conditions. Thus, this study shows that an in-house enzyme production, based on the solid-state conversion of an industrial byproduct, able of yielding cellulolytic cocktails with substantial saccharification performance is feasible.
AGR/13
AGR/13
