Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Energy Resources Technology
Article . 2020 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Numerical Study to Control the Combustion Performance of a Syngas-Fueled HCCI Engine at Medium and High Loads Using Different Piston Bowl Geometry and Exhaust Gas Recirculation

Authors: Kabbir Ali; Seungmook Oh; Kiseong Kim; Changup Kim; Yonggyu Lee;

A Numerical Study to Control the Combustion Performance of a Syngas-Fueled HCCI Engine at Medium and High Loads Using Different Piston Bowl Geometry and Exhaust Gas Recirculation

Abstract

Abstract This study aims to analyze the effect of piston bowl geometry on the combustion and emission performance of the syngas-fueled homogenous charge compression ignition (HCCI) engine, which operates under lean air–fuel mixture conditions for power plant usage. Three different piston bowl geometries were used with a reduction of piston bowl depth and squish area ratio of the baseline piston bowl with the same compression ratio of 17.1. Additionally, exhaust gas recirculation (EGR) is used to control the maximum pressure rise rate (MPRR) of syngas-fueled HCCI engines. To simulate the combustion process at medium load (5 bar indicated mean effective pressure (IMEP)) and high loads of (8 and 10 bar IMEP), ansys forte cfd package was used, and the calculated results were compared with Aceves et al.’s Multi-zone HCCI model, using the same chemical kinetics set (Gri-Mech 3.0). All calculations were accomplished at maximum brake torque (MBT) conditions, by sweeping the air–fuel mixture temperature at the inlet valve close (TIVC). This study reveals that the TIVC of the air–fuel mixture and the heat loss rate through the wall are the main factors that influence combustion phasing by changing the piston bowl geometry. It also finds that although pistons B and C give high thermal efficiency, they cannot be used for the combustion process, due to the very high MPRR and NOx emissions. Even though the baseline piston shows high MPRR (23 bar/degree), it is reduced, and reveals an acceptable range of 10–12 bar/degree, using 30% EGR.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%