Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Other literature type . 2021
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article . 2021
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interfacial Friction Prediction in a Vertical Annular Two-Phase Flow Based on Support Vector Regression Machine

Authors: Qiang Liu; Xingya Feng; Junru Chen;

Interfacial Friction Prediction in a Vertical Annular Two-Phase Flow Based on Support Vector Regression Machine

Abstract

Accurate prediction of interfacial friction factor is critical for calculation of pressure drop and investigation of flow mechanism of vertical annular two-phase flows. Theoretical models of interfacial friction factor based on physical insight have been developed; however, these are inconvenient in engineering practice as too many parameters need to be measured. Although many researchers have proposed various empirical correlations to improve computation efficiency, there is no generally accepted simple formula. In this study, an efficient prediction model based on support vector regression machine (SVR) is proposed. Through sensitivity analysis, five factors are determined as the input parameters to train the SVR model, relative liquid film thickness, liquid Reynolds number, gas Reynolds number, liquid Froude number and gas Froude number. The interfacial friction factor is chosen as the output parameter to check the overall performance of the model. With the help of particle swarm algorithm, the optimization process is accelerated considerably, and the optimal model is obtained through iterations. Compared with other correlations, the optimal model shows the lowest average absolute error (AAE of 0.0004), lowest maximum absolute error (MAE of 0.006), lowest root mean square error (RMSE of 0.00076) and highest correlation factor (r of 0.995). The analysis using various data in the literature demonstrates its accuracy and stability in interfacial friction prediction. In summary, the proposed machine learning model is effective and can be applied to a wider range of conditions for vertical annular two-phase flows.

Keywords

support vector regression machine, particle swarm algorithm, vertical annular two-phase flow, Water supply for domestic and industrial purposes, Hydraulic engineering, vertical annular two-phase flow; interfacial friction factor; support vector regression machine; particle swarm algorithm, interfacial friction factor, TC1-978, TD201-500

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold