Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Web Information Systems
Article . 2012 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
https://doi.org/10.1145/209553...
Conference object . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preserving privacy on the searchable internet

Authors: Xiaofeng Meng; Zhongyuan Wang; Ruxia Ma;

Preserving privacy on the searchable internet

Abstract

PurposeThe Web is the largest repository of information. Personal information is usually scattered on various pages of different websites. Search engines have made it easier to find personal information. An attacker may collect a user's scattered information together via search engines, and infer some privacy information. The authors call this kind of privacy attack “Privacy Inference Attack via Search Engines”. The purpose of this paper is to provide a user‐side automatic detection service for detecting the privacy leakage before publishing personal information.Design/methodology/approachIn this paper, the authors propose a user‐side automatic detection service. In the user‐side service, the authors construct a user information correlation (UICA) graph to model the association between user information returned by search engines. The privacy inference attack is mapped into a decision problem of searching a privacy inferring path with the maximal probability in the UICA graph and it is proved that it is a nondeterministic polynomial time (NP)‐complete problem by a two‐step reduction. A Privacy Leakage Detection Probability (PLD‐Probability) algorithm is proposed to find the privacy inferring path: it combines two significant factors which can influence the vertexes' probability in the UICA graph and uses greedy algorithm to find the privacy inferring path.FindingsThe authors reveal that privacy inferring attack via search engines is very serious in real life. In this paper, a user‐side automatic detection service is proposed to detect the risk of privacy inferring. The authors make three kinds of experiments to evaluate the seriousness of privacy leakage problem and the performance of methods proposed in this paper. The results show that the algorithm for the service is reasonable and effective.Originality/valueThe paper introduces a new family of privacy attacks on the Web: privacy inferring attack via search engines and presents a privacy inferring model to describe the process and principles of personal privacy inferring attack via search engines. A user‐side automatic detection service is proposed to detect the privacy inference before publishing personal information. In this user‐side service, the authors propose a Privacy Leakage Detection Probability (PLD‐Probability) algorithm. Extensive experiments show these methods are reasonable and effective.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average