Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Electromy...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Electromyography and Kinesiology
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Muscle activity patterns of the tensor fascia latae and adductor longus for ramp and stair walking

Authors: Jinger S. Gottschall; Nori Okita; Riley C. Sheehan;

Muscle activity patterns of the tensor fascia latae and adductor longus for ramp and stair walking

Abstract

Walking on both outdoor and indoor surfaces requires the ability to negotiate connections between vertical distances, simply known as hills and stairs. Therefore, the purpose of the present study was to evaluate the muscle activity patterns of the TFL and ADL during both hill and stair walking. We hypothesized that TFL and ADL activity during initial swing, initial stance, and late stance of up-ramp and up-stair walking would be greater than level walking. In contrast, we hypothesized that both TFL and ADL activity during initial swing of down-ramp and down-stair walking would be less. We utilized a 15° ramp, a 35° stair set, and for comparison of this steep angle, we also collected data on a 33° ramp. During up-ramp and up-stair walking, TFL and ADL activity during both initial swing and late stance of the up conditions were greater than level walking. For the down conditions, ADL activity during the swing phase of the steep down-ramp was less. Practically, our muscle activity results demonstrate that the hip abductors and hip adductors may provide additional pelvic stability and supplementary thigh acceleration during ramp and stair walking.

Related Organizations
Keywords

Male, Walking, Young Adult, Humans, Female, Hip Joint, Muscle, Skeletal, Gait, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Average