Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Icarusarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Icarus
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Article . 2018
Data sources: MPG.PuRe
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Icarus
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solar wind sputtering of wollastonite as a lunar analogue material – Comparisons between experiments and simulations

Authors: Paul S. Szabo; Rimpei Chiba; Herbert Biber; Reinhard Stadlmayr; Bernhard M. Berger; Daniel Mayer; Andreas Mutzke; +11 Authors

Solar wind sputtering of wollastonite as a lunar analogue material – Comparisons between experiments and simulations

Abstract

Abstract The sputtering of wollastonite (CaSiO3) by solar wind-relevant ions has been investigated experimentally and the results are compared to the binary collision approximation (BCA) codes SDTrimSP and SRIM-2013. Absolute sputtering yields are presented for Ar projectiles as a function of ion impact energy, charge state and impact angle as well as for solar wind H projectiles as a function of impact angle. Erosion of wollastonite by singly charged Ar ions is dominated by kinetic sputtering. The absolute magnitude of the sputtering yield and its dependence on the projectile impact angle can be well described by SDTrimSP as long as the actual sample composition is used in the simulation. SRIM-2013 largely overestimates the yield especially at grazing impact angles. For higher Ar charge states, the measured yield is strongly enhanced due to potential sputtering. Sputtering yields under solar wind-relevant H+ bombardment are smaller by two orders of magnitude compared to Ar. Our experimental yields also show a less pronounced angular dependence than predicted by both BCA programs, probably due to H implantation in the sample. Based on our experimental findings and extrapolations to other solar wind ions by using SDTrimSP, we present a model for the complete solar wind sputtering of a flat wollastonite surface as a function of projectile ion impact angle, which predicts a sputtering yield of 1.29 atomic mass units per solar wind ion for normal impact. We find that mostly He and some heavier ions increase the sputtering yield by more than a factor of two as compared to bombardment with only H+ ions.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Green
bronze