Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PALM-4U – A building-resolving microscale model to support future adaptation of cities in a changing urban climate

Authors: Sebastian Hettrich; Björn Maronga; Siegfried Raasch;

PALM-4U – A building-resolving microscale model to support future adaptation of cities in a changing urban climate

Abstract

<p align="justify">In a world with increasing extreme weather events, such as dry or extreme rain periods, due to climate change and an ever growing population specifically in urban areas, a forsighted planning and adaption of cities and their urban surroundings is becoming more and more important. Here, particularly health and comfort of the urban population, such as thermal comfort, air quality, ventilation or UV exposure, but also other aspects like safety and environmental sustainability play an important role. In order to create the cities of tomorrow that meet the real requirements to host healthy and firendly living conditions, city planners are relying on scientific models where they can simulate how changes in the urban environment can effect its climate. The PALM-4U (Parallelised Large-Eddy Simulation Model for Urban Applications) model was specifically developed to be able to simulate a large variety of parameters on short timescales and at the high resolution that is required to resolve single buildings or obstacles like trees within the city.</p><p align="justify">In September 2019, the second phase of the German research project MOSAIK (model-based city planning and application in climate change), a module within the large over-arching project [UC]² (Urban Climate Under Change) that focusses on the further development of the model, has started.</p><p align="justify">In this overview, we will present the PALM-4U‘s current capabilities and outline the planned future development in the coming years like windbreak modelling, coupling with traffic flow models, including biogenic volatile organic compounds in urban air quality modelling. Furthermore, our PALM-4U community model strategy will be explained.</p>

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average