
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Facile Surface Functionalization of Hydrophobic Magnetic Nanoparticles

Facile Surface Functionalization of Hydrophobic Magnetic Nanoparticles
Nonpolar phase synthesized hydrophobic nanocrystals show attractive properties and have demonstrated prominent potential in biomedical applications. However, the preparation of biocompatible nanocrystals is made difficult by the presence of hydrophobic surfactant stabilizer on their surfaces. To address this limitation, we have developed a facile, high efficiency, single-phase and low-cost method to convert hydrophobic magnetic nanoparticles (MNPs) to an aqueous phase using tetrahydrofuran, NaOH and 3,4-dihydroxyhydrocinnamic acid without any complicated organic synthesis. The as-transferred hydrophilic MNPs are water-soluble over a wide pH range (pH = 3-12), and the solubility is pH-controllable. Furthermore, the as-transferred MNPs with carboxylate can be readily adapted with further surface functionalization, varying from small molecule dyes to oligonucleotides and enzymes. Finally, the strategy developed here can easily be extended to other types of hydrophobic nanoparticles to facilitate biomedical applications of nanomaterials.
- University of California System United States
- Florida Southern College United States
- University of Florida United States
- Hunan Women'S University China (People's Republic of)
- Hunan City University China (People's Republic of)
Surface Properties, Bioengineering, General Chemistry, Hydrogen-Ion Concentration, 620, Chemical Sciences, Nanotechnology, Particle Size, Magnetite Nanoparticles, Hydrophobic and Hydrophilic Interactions
Surface Properties, Bioengineering, General Chemistry, Hydrogen-Ion Concentration, 620, Chemical Sciences, Nanotechnology, Particle Size, Magnetite Nanoparticles, Hydrophobic and Hydrophilic Interactions
3 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).155 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
