Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Physical Chemistry B
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of Lipid Composition on Membrane Activity of Antimicrobial Phenylene Ethynylene Oligomers

Authors: Som, A; Tew, GN;

Influence of Lipid Composition on Membrane Activity of Antimicrobial Phenylene Ethynylene Oligomers

Abstract

Host defense peptides (HDPs), part of the innate immune system, selectively target the membranes of bacterial cells over that of host cells. As a result, their antimicrobial properties have been under intense study. Their selectivity strongly depends on the chemical and mostly structural properties of the lipids that make up different cell membranes. The ability to synthesize HDP mimics has recently been demonstrated. To better understand how these HDP mimics interact with bilayer membranes, three homologous antimicrobial oligomers (AMOs) 1-3 with an m-phenylene ethynylene backbone and alkyl amine side chains were studied. Among them, AMO 1 is nonactive, AMO 2 is specifically active, and AMO 3 is nonspecifically active against bacteria over human red blood cells, a standard model for mammalian cells. The interactions of these three AMOs with liposomes having different lipid compositions are characterized in detail using a fluorescent dye leakage assay. AMO 2 and AMO 3 caused more leakage than AMO 1 from bacteria membrane mimic liposomes composed of PE/PG lipids. The use of E. coli lipid vesicles gave the same results. Further changes of the lipid compositions revealed that AMO 2 has selectively higher affinity toward PE/PG and E. coli lipids than PC, PC/PG or PC/PS lipids, the major components of mammalian cell membranes. In contrast, AMO 3 is devoid of this lipid selectivity and interacts with all liposomes with equal ease; AMO 1 remains inactive. These observations suggest that lipid type and structure are more important in determining membrane selectivity than lipid headgroup charges for this series of HDP mimics.

Country
United States
Keywords

Blood Bactericidal Activity, Time Factors, Cardiolipins, Cell Membrane, Phosphatidylglycerols, Phosphatidylserines, Binding, Competitive, Lipids, Anti-Bacterial Agents, Membrane Potentials, Alkynes, Liposomes, Escherichia coli, Humans, Amines, Antimicrobial Cationic Peptides, Ethers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    102
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
102
Top 10%
Top 10%
Top 1%
bronze